	Question		Answer	Marks		Guidance
1	(i)	(A)	P(Watched cyc but not fb) = $\frac{15}{250} = \frac{3}{50} = 0.06$	B1	CAO (aef)	
				[1]		
	(i)	(B)	P(Watched one or two) = $\frac{33+12+21+14+3+65}{250}$	M1	OR: $\frac{250 - (64 + 38)}{250} =$	For M1 terms must be added with no extra terms (added or subtracted)
			$=\frac{148}{250}=\frac{74}{125}=0.592$	A1 [2]	CAO (aef)	
	(ii)		P(Not watched fb watched cyc) = $\frac{15}{67}$ = 0.224 (0.223880597)	M1		For denominator of either 67 or 67/250 or 0.268
				A1 [2]	CAO (aef)	Allow 0.22 with working

2	(i)	P(Neither is an ace) = $\left(1 - \frac{4}{52}\right)^2$	M1	For 48/52 oe seen	
		$=\frac{2304}{2704}=\frac{144}{169}=0.852 \ (0.8572071)$	A1 [2]	CAO	Allow 0.85 with working
	(ii)	Expected number = $10 \times 0.852 = 8.52$	[1]	FT their (i) if seen	Do <u>not</u> allow whole number final answer even if 8.52 seen first. Allow fractional answer

Question	Answer	Marks	Guidance		
3 (i)	Accept 0.2 Accept	G1 G1	Do a vertical scan and give: First column Second column	Allow labels such as A, R, F(Fail) etc All probabilities correct All probabilities correct	
	0.5 0.3 Reject 0.2 0.5 Reject 0.4 0.4 Accept 0.4 Accept 0.6 Reject	G1	Final column Do not award if first two branches missing Branches two and three should come out of 'retest'	All probabilities correct If any labels missing or incorrect allow max 2/3 Do not allow misreads here as all FT (eg 0.3 and 0.5 reversed)	
(**)		[3]		ET their tree reported a compact	
(ii)	P(Accepted) = $0.2 + (0.3 \times 0.2) + (0.3 \times 0.3 \times 0.4)$	M1	For second or third product	FT their tree provided correct numbers of terms and correct structure of 3, 3, 2 branches.	
	= 0.2 + 0.06 + 0.036 = 0.296	A1 [2]	CAO	Allow 37/125 oe	
(iii)	$P(At least one retest given accepted) = \frac{P(At least one retest and accepted)}{P(Accepted)}$	M1	For numerator	FT their tree provided correct numbers of terms and correct structure of 3, 3, 2 branches. for both M1's	
	$= \frac{0.3 \times 0.2 + 0.3 \times 0.3 \times 0.4}{0.296} = \frac{0.096}{0.296}$	M1	For denominator	Both must be part of a fraction Allow 12/125 oe	
	= 0.324	A1 [3]	FT their 0.296 and 0.096 Allow 0.32 with working	Allow 12/37 oe	

	Question		Answer		Gi	uidance
4	(i)		Because $P(L R) \neq P(L)$	E1	If two or more methods given and only one correct, do not award the mark Allow $0.45 \neq 0.15$	Either $P(L \cap R) (= 0.099) \neq P(L)$ × $P(R)$, provided 0.099 in (ii) or 0.099 \neq 0.15 × 0.22 (= 0.033) Look out for complement
				[1]		methods, etc
	(ii)		$P(L \cap R) = P(L \mid R) \times P(R) = 0.45 \times 0.22 = 0.099$	M1 A1 [2]	For product CAO	Allow if done correctly in part(i) Allow 99/1000
	(iii)		L 0.3951 (0.099) 0.121 0.729	G1 G1	For two labelled intersecting circles, provided no incorrect labelling. For at least 2 correct probabilities. FT their $P(L \cap R)$ from part (ii) provided ≤ 0.15 For remaining probabilities.	Condone labels such as $P(L)$ etc Allow other shapes in place of circles No need for 'box' FT from 0.033 in (ii) gives 0.117, 0.033, 0.187, 0.663 In general $0.15 - x, x, 0.22 - x, 0.63 + x$ May also see 0.0825, 0.0675, 0.1525, 0.6975
				G1 [3]	FT their $P(L \cap R)$ providing probabilities between 0 and 1.	

5	(i)	$P(L \cap W) = P(L W) \times P(W) = 0.4 \times 0.07 = 0.028$	M1 A1 [2]	For $P(L W) \times P(W)$ cao	
	(ii)		B1 B1 B1	For two labelled intersecting circles For at least 2 correct probabilities. For remaining probabilities	FT their 0.028 provided < 0.038
	(iii)	$P(L \cap W) = 0.028, P(L) \times P(W) = 0.038 \times 0.07 = 0.00266$ Not equal so not independent	[3] M1 A1 E1* dep on M1 [3]	For correct use of $P(L) \times P(W)$ If $P(L)$ wrong, max M1A0E0. No marks if $P(W)$ wrong For 0.00266 Allow 'they are dependent' Do not award E1 if $P(L \cap W)$ wrong	Or EG $P(L W) = 0.4$, $P(L) = 0.038$ Not equal so not independent M1 is for comparing with some attempt at numbers P(L W) with $P(L)$, A1 for 0.038 If $P(L)$ wrong, max M1A0E0

6	(i)	$\left(\frac{5}{6}\right)^2 \times \frac{1}{6} = \frac{25}{216} (= 0.116)$	M1	For 5/6 (or 1 – 1/6) seen	If extra term or whole number factor present give M1M0A0
			M1 A1 [3]	For whole product cao	Allow 0.12 with working
	(ii)	$1 - \left(\frac{5}{6}\right)^{10} = 1 - 0.1615 = 0.8385$	M1	For (5/6) ¹⁰ (without extra terms)	Allow 0.838 or 0.839 without working and 0.84 with working. For addition $P(X = 1) + + P(X = 10)$ give M1A1 for 0.84 or better, otherwise M0A0
			A1 [2]	cao	

C	Questic	on	Answer	Marks	Guidance		
7	(i)		P(All blue) = $\frac{30}{50} \times \frac{29}{49} \times \frac{28}{48} = 0.2071$	M1	For $\frac{30}{50}$ × (as part of a triple product)	$(30/50)^{3} = 0.216 \text{ scores}$ M1M0A0 $\frac{k}{50} \times \frac{(k-1)}{49} \times \frac{(k-2)}{48} \text{ for values of } k$ other than 30 scores M1M0A0 Zero for binomial unless simplifies to (3/5)^{3}	
				M1	For product of other two fractions	Correct working but then multiplied or divided by some factor scores M1M0A0	
			OR $\binom{30}{3} / \binom{50}{3} = 4060/19600 = 29/140 = 0.2071$	A1	CAO SC2 for P(All red) = 0.0582	Accept 0.21 with working and 0.207 without working Allow unsimplified fraction as final answer 24360/117600 oe	
			M2 for the complete method	[3]	0.0382	1111al aliswei 24300/11/000 0e	
	(ii)		P(All red) = $\frac{20}{50} \times \frac{19}{49} \times \frac{18}{48} = 0.0582$ or $\binom{20}{3} / \binom{50}{3} = 0.0582$	M1	For P(All red)	SC2 for $1 - (30/50)^3 - (20/50)^3$ = $1 - 0.216 - 0.064 = 0.72$, providing consistent with (i) . If not consistent with (i) MOMOA0	
			P(At least one of each colour) = 1 - (0.2071 + 0.0582) = 0.7347 or $1 - \left(\frac{29}{140} + \frac{57}{980}\right) = 1 - \frac{260}{980} = 1 - \frac{13}{49} = \frac{36}{49}$	M1	For 1 – (0.2071 + 0.0582)		
				A1	CAO	Allow 0.73 with working	
			OR	[3]		Allow unsimplified fraction as	
			P(2b,1r)+P(1b,2r)	(M1)	For either $\frac{30}{50} \times \frac{29}{49} \times \frac{20}{48}$ or $\frac{20}{50} \times \frac{19}{49} \times \frac{30}{48}$	final answer 86400/117600 oe Allow M1 for $3\times(30/50)^2\times(20/50)$ or $3\times(30/50)\times(20/50)^2$ and second M1 for sum of both if = 0.72 If not consistent with (i) M0M0A0	

C	Question	Answer	Marks			
8	(i)	X ~ B(30, 0.85) P(X = 29) = $\binom{30}{29} \times 0.85^{29} \times 0.15^{1} = 30 \times 0.0013466 = 0.0404$	M1 M1	For $0.85^{29} \times 0.15^{1} =$ 0.0013466 For $\begin{pmatrix} 30\\ 29 \end{pmatrix} \times p^{29} \times q^{1}$	With $p + q = 1$	
			A1 [3]	CAO	Allow 0.04 www If further working (EG P($X=29$) -P(X=28)) give M2A0	
	(ii)	$P(X = 30) = 0.85^{30} = 0.0076$ $P(X \ge 29) = 0.0404 + 0.0076 = 0.0480$	M1 M1 A1 [3]	For 0.85^{30} For $P(X = 29) + P(X = 30)$ (not necessar correct, but both attempts at binomial, including coefficient in (i)) CAO	Allow eg 0.04+0.0076=0.0476 Allow 0.05 with working	
	(iii)	Expected number = 10 × 0.0480 = 0.480	[2]	For 10 × their (ii) FT their (ii) but if answer to (ii) leads to a whole number for (iii) give M1A0	provided (ii) between 0 and 1 Do not allow answer rounded to 0 or 1.	